

DPP - 6 (Geometrical Optics)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/67

https://youtu.be/HoSCi_J-ZQ4

Q 1. Critical angle of glass is θ_{1} and that of water is θ_{2}. The critical angle for water and glass surface would be : $\left(\mu_{\mathrm{g}}=3 / 2\right.$, $\left.\mu_{\mathrm{w}}=4 / 3\right)$
(a) less than θ_{2}
(b) between θ_{1} and θ_{2}
(c) greater than θ_{2}
(d) less than θ_{1}

Q 2. Right face of the glass cube is silvered or shown. A ray of light incident on left face of the cube as shown. Find the deviation of the ray when it comes qut of the glass cube
(a) 0
(b) 90°
(c) 180°
(d) 270°

Q 3. A ray hits the y -axis making an angle q with y -axis as shown in the figure. The variation of refractive index with x-coordinate is $\mu=\mu_{0}\left(1-\frac{x}{d}\right)$ for $0 \leq \mathrm{x} \leq \mathrm{d}\left(1-\frac{1}{\mu_{0}}\right)$ and $\mathrm{m}=\mathrm{m}_{0}$ for $\mathrm{x}<0$, where d is a positive constant. The maximum x-coordinate of the path traced by the ray is

(a) $\mathrm{d}(1-\sin \theta)$
(b) $\mathrm{d}(1-\cos \theta)$
(c) $\mathrm{d} \sin \theta$
(d) $\mathrm{d} \cos \theta$

Q 4. For the given incident ray as shown in figure, the condition of total internal reflection of the ray will be satisfied if the refractive index of block will be :

(a) $\frac{\sqrt{3}}{2}$
(b) $\frac{\sqrt{2}+1}{2}$
(c) $\sqrt{\frac{3}{2}}$
(d) $\sqrt{\frac{7}{6}}$

Q 5. A cylindrical optical fiber (quarter circular shape) of refractive index $\mu=2$ and diameter $\mathrm{d}=4 \mathrm{~mm}$ is surrounded by air. A light beam is sent into the fiber along its axis as shown in figure. Then the smallest outer radius R (as shown in figure) for which no light escapes after first incident on curved surface of fiber is.

(a) 2 mm
(b) 4 mm
(c) 8 mm
(d) 6 mm

Q 6. A bulb is placed at a depth of $2 \sqrt{7} \mathrm{~m}$ in water and a floating opaque disc is placed over the bulb so that the bulb is not visible from the surface. What is the minimum diameter of the disc?
(a) 10 m
(b) 12 m
(c) 8 m
(d) 6 m

Q 7. A light source is submerged inside water. It is moving in upward direction due to buoyancy force. Which of the following is incorrect?

(a) Percentage of light transferring from water to air is increasing
(b) Percentage of light transferring from water to air is constant
(c) Base area of light cone is increasing
(d) Base area of light cone is decreasing

Q 8. Light is incident normally on face $A B$ of a prism as shown in figure. A liquid of refractive index μ is placed on face $A C$ of the prism. The prism is made of glass of refractive index $3 / 2$. The limits of μ for which total internal reflection takes place on face AC is:

(a) $\mu>\frac{\sqrt{3}}{2}$
(b) $\mu<\frac{3 \sqrt{3}}{4}$
(c) $\mu>\sqrt{3}$
(d) $\mu<\frac{\sqrt{3}}{2}$

Q 9. A ray of light travels from an optically denser to rarer medium. The critical angle for the two media is c . The maximum possible deviation of the ray will be
(a) $\pi-\mathrm{c}$
(b) $\pi-2 \mathrm{c}$
(c) 2 c
(d) $\pi / 2+c$

Q 10. A vertical pencil of rays comes from bottom of a tank filled with a liquid. When it is accelerated with an acceleration of $7.5 \mathrm{~m} / \mathrm{s}^{2}$, the ray is seen to be totally reflected by liquid surface. What is minimum possible refractive index of liquid?
(a) slightly greater than $4 / 3$
(b) slightly greater than 5/3
(c) slightly greater than $1 / 5$
(d) stightly greater than 1.75

Q 11. Monochromatic light is incident on plane interface $A B$ between two media of refractive indices μ_{1} and $\mu_{2}\left(\mu_{2}>\mu_{1}\right)$ at angle θ shown in figure. The angle θ is infinitesimally greater than the critical angle for two media so that total internal reflection takes place. Now, if a transparent slab DEFG of uniform thickness and having refractive index μ_{3} is introduced on the interface as shown in the figure, which of the following statements is/are correct?

(a) If $\mu_{3}<\mu_{1}$, total internal reflection will take place at face GF
(b) If $\mu_{3}>\mu_{1}$, light will refract into the slab
(c) If $\mu_{3}>\mu_{1}$, total internal reflection will take place at face DE
(d) Light cannot be transmitted to medium I

Q 12. The figure shows a ray incident at an angle $\mathrm{i}=/ 3$. If the plot drawn the variation of $|r-i|$ versus $\frac{\mu_{1}}{\mu_{2}}=\mathrm{k}$, ($\mathrm{r}=$ angle of refraction)

(a) the value of k_{1} is $\frac{2}{\sqrt{3}}$
(b) the value of $\theta_{1}=\pi / 6$
(c) the value of $\theta_{2}=\pi / 3$
(d) the value of k_{2} is 1

Q 13. Due to partial reflection a thick mirror forms large no of images. If image closest to observer is called first image, second closest image is called second image and so on. brightest image is
(a) First
(b) Second
(c) Third
(d) fourth

Answer Key

Q.1 c	Q.2 c	Q.3 b	Q.4 c	Q.5 c
Q.6 b	Q.7 a, c	Q.8 b	Q.9 b	Q.10 b
Q.11 a, b, c, d	Q.12 b, c, d	Q.13 b		

